Department for Functional Imaging in Surgical Oncology

The Department for Functional Imaging in Surgical Oncology develops high-precision imaging methods for cancer surgery, using short-wave infrared light, fluorescent dyes and cutting-edge detection technologies.

The research is dedicated to the development of excellent techniques for biomedical imaging. The advancement of new targeted contrast agents and novel imaging modalities will pave the way for personalized therapy and high precision treatments in the near future. Imaging in the short-wave infrared region (SWIR) is a new technology for biomedical applications. It provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. In this wavelength range tissues become translucent. Recent progress in detection technology and the development of probes demonstrated that, in principal, SWIR imaging enables applications which were previously not feasible with any other technique. These advantages will enable new capabilities in preclinical and clinical imaging

 With the new method, it could be possible in future to detect individual cancer cells on tumor margins and in lymph nodes during an operation. In addition, the method offers the potential to simultaneously visualize certain structures - such as the tumor, surrounding healthy tissue, and draining lymphatic vessels - in real-time during surgery.

Contact

Oliver Bruns

Prof. Dr. Oliver Bruns
Head of Department
Functional Imaging in Surgical Oncology
E-Mail: oliver.bruns(at)nct-dresden.de

Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS,  Lingg JPG, Tsrunchev PT, Nix MN, Ruehle B, Sanders C, Riffle L, Robinson CM, Difilippantonio S, Kalen JD, Resch-Genger U, Ivanic J, Bruns OT*, Martin J. Schnermann*.Targeted Multicolor In Vivo Imaging Over 1000 nm Enabled by Nonamethine Cyanines. Nature Methods 2022, in print *shared corresponding authors

Cosco ED, Arús BA, Spearman AL, Atallah TL, Lim I, Leland OS, Caram JR, Bischof TS, Bruns OT*, Sletten EM*. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection. J Am Chem Soc. 2021, 12;143:6836-6846. PMID: 33939921 *shared corresponding authors

Cosco ED, Spearman AL, Ramakrishnan S, Lingg JGP, Saccomano M, Pengshung M, Arús BA, Wong KCY, Glasl S, Ntziachristos V, Warmer M, McLaughlin RR, Bruns OT*, Sletten EM*. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nature Chemistry. 2020, 12:1123-1130. PMID: 33077925 *shared corresponding authors

Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG*, Bruns OT*. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018, 24;115:4465-4470. PMID: 29626132 *shared corresponding authors

Fischer AW, Jaeckstein MY, Gottschling K, Heine M, Sass F, Mangels N, Schlein C, Worthmann A, Bruns OT, Yuan Y, Zhu H, Chen O, Ittrich H, Nilsson SK, Stefanicka P, Ukropec J, Balaz M, Dong H, Sun W, Reimer R, Scheja L, Heeren J. Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metabolism. 2020 Dec 17:S1550-4131(20)30656-2. doi: 10.1016/j.cmet.2020.12.001.

Zhao S, Todorov MI, Cai R, AI-Maskari R, Steinke H, Kemter E, Mai H, Rong Z, Warmer M, Aguilera KS, Schoppe O, Paetzold JC, Gesierich B, Wong MN, Huber TB, Duering M, Bruns OT, Menze B, Lipfert J, Puelles VG, Wolf E, Bechmann I, Ertürk A. Cellular and Molecular Probing of Intact Human Organs. Cell. 2020 Feb 20;180(4):796-812.e19. doi: 10.1016/j.cell.2020.01.030

Bruns OT*, Bischof TS*, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, Wilson MWB, Chen O, Wei H, Hwang GW, Montana DM, Coropceanu I, Achorn OB, Kloepper J, Heeren J, So PTC, Fukumura D, Jensen KF, Jain RK, Bawendi MG*. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017, 1:0056. PMID: 29119058 *shared first authors

Wei H*, Bruns OT*, Kaul MG*, Hansen E, Barch M, Wiśniowska A, Chen O, Cordero JM, Okada S, Heine M, Farrar C, Chen Y, Montana DM, Hansen E, Adam G, Ittrich H, Jasanoff A, Bawendi MG, Exceedingly-Small Iron Oxide Nanoparticles as Positive MRI Contrast Agents, PNAS, 2017 Feb 28;114(9):2325-2330.. doi: 10.1073/pnas.1620145114. *shared first authors

Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PLSM, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M and Heeren J, Brown adipose tissue activity controls triglyceride clearance. Nature Medicine, 2011 Feb;17(2):200-5.

Bruns OT*, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Lauterwasser J, Nikolic MS, Mollwitz B, Merkel M, Bigall NC, Sapra S, Reimer R, Hohenberg H, Weller H, Eychmüller A, Adam G, Beisiegel U, Heeren J. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nature Nanotechnology. 2009, 4:193-201. PMID: 19265850 *corresponding author

  • Perkin Elmer Lambda 1050+, including Three Detectors module and the 150mm Integrating Sphere module
  • Home-built photoexcitation/photoluminescence spectrometer based on an NKT SuperK and a Princeton Instruments spectrograph with a Pixis and Pylon. Excitation 400-1600nm, detection 400-1600nm