NCT MASTER
https://www.nct-dresden.de/en/trials/900-000001186
https://www.nct-dresden.de/@@site-logo/logo-nct.svg
NCT MASTER
cross-entity / Basket, Sarcoma
General, Soft tissue sarcomas, Other sarcoma diseases, Bone sarcomas, GIST (gastrointestinal stromal tumor)
Other clinical trials
.“Precision oncology” describes the ability to predict which patients will likely respond to specific cancer therapies based on comprehensive, high-resolution molecular diagnostics as well as the functional understanding of individual tumors.
Such stratification of patients can be achieved, e.g., through next-generation sequencing of tumor DNA and RNA, revealing genomic alterations that have immediate clinical implications. DKFZ/NCT/DKTK MASTER provides a complete workflow for selection and consenting of patients, tissue processing, whole-exome/genome and RNA sequencing, bioinformatic analysis, and molecularly guided clinical decision making by molecular tumor boards, which are held three times a week and include members with expertise in clinical oncology, pathology, molecular biology, bioinformatics, and medical genetics and counseling.
Since many molecular alterations identified in human cancers have unknown functional consequences and can therefore not directly be interpreted regarding their suitability as therapeutic targets, separating “driver” mutations from biologically neutral “passenger” alterations is critical for translating genetic information into the clinic. Furthermore, the therapeutic value of known oncogenic mutations may vary depending on tissue context. To address these challenges, we investigate the functional role of genetic alterations predicted to be damaging in appropriate experimental systems, followed by the analysis of phenotypic consequences. The goal of these studies is to establish a versatile platform for rapid “functionalization” of individual molecular profiles and develop a continuously evolving, “learning” system to support treatment decisions at NCT.
“Precision oncology” describes the ability to predict which patients will likely respond to specific cancer therapies based on comprehensive, high-resolution molecular diagnostics as well as the functional understanding of individual tumors.
Such stratification of patients can be achieved, e.g., through next-generation sequencing of tumor DNA and RNA, revealing genomic alterations that have immediate clinical implications. DKFZ/NCT/DKTK MASTER provides a complete workflow for selection and consenting of patients, tissue processing, whole-exome/genome and RNA sequencing, bioinformatic analysis, and molecularly guided clinical decision making by molecular tumor boards, which are held three times a week and include members with expertise in clinical oncology, pathology, molecular biology, bioinformatics, and medical genetics and counseling.
Since many molecular alterations identified in human cancers have unknown functional consequences and can therefore not directly be interpreted regarding their suitability as therapeutic targets, separating “driver” mutations from biologically neutral “passenger” alterations is critical for translating genetic information into the clinic. Furthermore, the therapeutic value of known oncogenic mutations may vary depending on tissue context. To address these challenges, we investigate the functional role of genetic alterations predicted to be damaging in appropriate experimental systems, followed by the analysis of phenotypic consequences. The goal of these studies is to establish a versatile platform for rapid “functionalization” of individual molecular profiles and develop a continuously evolving, “learning” system to support treatment decisions at NCT.